skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bodenreider, Olivier"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract ObjectiveSNOMED CT is the largest clinical terminology worldwide. Quality assurance of SNOMED CT is of utmost importance to ensure that it provides accurate domain knowledge to various SNOMED CT-based applications. In this work, we introduce a deep learning-based approach to uncover missing is-a relations in SNOMED CT. Materials and MethodsOur focus is to identify missing is-a relations between concept-pairs exhibiting a containment pattern (ie, the set of words of one concept being a proper subset of that of the other concept). We use hierarchically related containment concept-pairs as positive instances and hierarchically unrelated containment concept-pairs as negative instances to train a model predicting whether an is-a relation exists between 2 concepts with containment pattern. The model is a binary classifier leveraging concept name features, hierarchical features, enriched lexical attribute features, and logical definition features. We introduce a cross-validation inspired approach to identify missing is-a relations among all hierarchically unrelated containment concept-pairs. ResultsWe trained and applied our model on the Clinical finding subhierarchy of SNOMED CT (September 2019 US edition). Our model (based on the validation sets) achieved a precision of 0.8164, recall of 0.8397, and F1 score of 0.8279. Applying the model to predict actual missing is-a relations, we obtained a total of 1661 potential candidates. Domain experts performed evaluation on randomly selected 230 samples and verified that 192 (83.48%) are valid. ConclusionsThe results showed that our deep learning approach is effective in uncovering missing is-a relations between containment concept-pairs in SNOMED CT. 
    more » « less